skip to main content


Search for: All records

Creators/Authors contains: "Aguilar, César"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract With an ever-increasing amount of (meta)genomic data being deposited in sequence databases, (meta)genome mining for natural product biosynthetic pathways occupies a critical role in the discovery of novel pharmaceutical drugs, crop protection agents and biomaterials. The genes that encode these pathways are often organised into biosynthetic gene clusters (BGCs). In 2015, we defined the Minimum Information about a Biosynthetic Gene cluster (MIBiG): a standardised data format that describes the minimally required information to uniquely characterise a BGC. We simultaneously constructed an accompanying online database of BGCs, which has since been widely used by the community as a reference dataset for BGCs and was expanded to 2021 entries in 2019 (MIBiG 2.0). Here, we describe MIBiG 3.0, a database update comprising large-scale validation and re-annotation of existing entries and 661 new entries. Particular attention was paid to the annotation of compound structures and biological activities, as well as protein domain selectivities. Together, these new features keep the database up-to-date, and will provide new opportunities for the scientific community to use its freely available data, e.g. for the training of new machine learning models to predict sequence-structure-function relationships for diverse natural products. MIBiG 3.0 is accessible online at https://mibig.secondarymetabolites.org/. 
    more » « less
  2. Three new species of Rock GeckosCnemaspis lineogularissp. nov.,C. phangngaensissp. nov., andC. thachanaensissp. nov. of thechanthaburiensisandsiamensisgroups are described from the Thai portion of the Thai-Malay Peninsula. These new species are distinguished from all other species in their two respective groups based on a unique combination of morphological characteristics, which is further supported by mitochondrial DNA (mtDNA) from the NADH dehydrogenase subunit 2 gene (ND2).Cnemaspis lineogularissp. nov. is differentiated from all other species in thechanthaburiensisgroup by having a smaller maximum SVL 38 mm, 13 paravertebral tubercles, enlarged femoral scales, no caudal bands, and a 19.5–23.0% pairwise sequence divergence (ND2).Cnemaspis phangngaensissp. nov. is differentiated from all other species in the siamensis group by having the unique combination of 10 infralabial scales, four continuous pore-bearing precloacal scales, paravertebral tubercles linearly arranged, lacking tubercles on the lower flanks, having ventrolateral caudal tubercles anteriorly present, caudal tubercles restricted to a single paraveterbral row on each side, a single median row of keeled subcaudals, and a 8.8–25.2% pairwise sequence divergence (ND2).Cnemaspis thachanaensissp. nov. is distinguished from all other species in the siamensis group by having 10 or 11 supralabial scales 9–11 infralabial scales, paravertebral tubercles linearly arranged, ventrolateral caudal tubercles anteriorly, caudal tubercles restricted to a single paravertebral row on each side, a single median row of keeled subcaudal scales, lacking a single enlarged subcaudal scale row, lacking postcloaclal tubercles in males, the presence of an enlarged submetatarsal scale at the base if the 1st toe, and a 13.4–28.8% pairwise sequence divergence (ND2). The new phylogenetic analyses placeC. punctatonuchalisandC. vandeventeriin the siamensis group withC. punctatonuchalisas the sister species toC. huaseesomandC. vandeventerias the sister species toC. siamensis, corroborating previous hypotheses based on morphology. The discovery of three new karst-dwelling endemics brings the total number of nominal ThaiCnemaspisspecies to 15 and underscores the need for continued field research in poorly known areas of the Thai-Malay Peninsula, especially those that are threatened and often overlooked as biodiversity hot spots.

     
    more » « less